Evidence for Remote Effects of Dreissenid Mussels on the Amphipod Diporeia: Analysis of Lake Ontario Benthic Surveys, 1972–2003

2007 ◽  
Vol 33 (3) ◽  
pp. 642 ◽  
Author(s):  
James M. Watkins ◽  
Ronald Dermott ◽  
Stephen J. Lozano ◽  
Edward L. Mills ◽  
Lars G. Rudstam ◽  
...  
2010 ◽  
Vol 61 (2) ◽  
pp. 292-299 ◽  
Author(s):  
L. L. Ware ◽  
S. A. Petrie ◽  
S. S. Badzinski ◽  
R. C. Bailey

1977 ◽  
Vol 12 (1) ◽  
pp. 213-232 ◽  
Author(s):  
N.D. Yan ◽  
W.A. Scheider ◽  
P.J. Dillon

Abstract Intensive studies of Nelson Lake, a Sudbury area lake of intermediate pH ~5.7), were begun in 1975. The chemistry of the lake was typical of that of most PreCambrian Shield lakes except that low alkalinities and high sulphate concentrations were observed along with elevated heavy metal levels. After raising the pH of Nelson Lake to 6.4 by addition of Ca(OH)2 and CaCO3, the metals were reduced to background concentrations. Phytoplankton and Zooplankton communities, which at pH of 5.7 were typical of PreCambrian lakes, were not affected by the experimental elevation of lake pH.


2003 ◽  
Vol 38 (4) ◽  
pp. 627-645 ◽  
Author(s):  
Yerubandi R. Rao ◽  
Raj C. Murthy ◽  
Fausto Chiocchio ◽  
Michael G. Skafel ◽  
Murray N. Charlton

Abstract The alternate strategy of open-lake discharge may alleviate the need for unusually stringent treatment needed to meet water quality goals of the Hamilton Harbour Remedial Action Plan (RAP). The latest update of the RAP recommended a study of the possibility of offshore discharges. A study conducted for the City of Burlington has proposed a location for outfall in Lake Ontario. This paper utilizes a combination of physical limnological data and mathematical models to predict the waste plume characteristics for the proposed outfall in the lake. Near-field dilutions obtained from a mixing zone model show that, for treated effluents with a discharge condition of 2 m3/s at the proposed outfall site at Burlington, the dilution ratios are in the range of 13:1 to 28:1 for weak to moderate currents during summer stratification. Winter dilution ratios increased to 21:1 to 96:1 for moderate currents. The recommended site for open-lake outfall provides acceptable near-field dilutions for treated effluents under typical lake currents and density structure. The extension of outfall to a location farther offshore is only marginally beneficial. With the proposed Burlington outfall location and discharge conditions, no far-field contamination is observed near the beaches or nearby water intakes for typical summer and winter conditions. Thus, this study indicates that by discharging the treated sewage from an outfall in Lake Ontario it is possible to achieve the Hamilton Harbour RAP goals.


Sign in / Sign up

Export Citation Format

Share Document